www.PapaCambridge.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/02

Paper 2

October/November 2003

2 hours

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 20.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	•

Fig. 1.1 shows some cells that are found in the lining of the trachea (windpipe).

Fig. 1.1

(a)	(1)	Name the parts of cell Y that are labelled A and B.	
		A	
		B	2]
	(ii)	How can you tell that cell Y is an animal cell and not a plant cell?	
		[i	2]
(b)	Des	cribe the function of cell X.	
		[i	2]
(c)	Whe	en a person smokes a cigarette, the cilia stop working.	
	Ехр	lain how this can affect the smoker's breathing system.	
			.
		[31

[3]

Fig. 2.1 shows an electrical circuit set up to measure the current going through a la 2 the voltage across it.

Fig. 2.1

(a) Draw the circuit diagram for the apparatus used in this experiment.

(b)	Stat	te one way to increase the current in this circuit.
		[1]
(c)	If th	e resistance of the variable resistor is increased, state and explain what happens to
	(i)	the voltmeter reading,
	(ii)	the ammeter reading,
	(iii)	the brightness of the lamp.

3 (a) Many metals react with dilute hydrochloric acid. A general word equation reaction is shown below.

	4 WMM. Par	For Examiner's
	ny metals react with dilute hydrochloric acid. A general word equation ction is shown below.	Use
	metal + hydrochloric acid \rightarrow metal chloride + hydrogen	ambridge
(i)	Describe the test for hydrogen.	COM
	[1	

(ii) The apparatus shown in Fig. 3.1 can be used to investigate the rate of reaction between hydrochloric acid and a metal.

To start the reaction, the flask is tilted to mix the reactants.

Fig. 3.1

Describe between					compare 3.	the	rates	of	reaction
	 	 	 	 					[3]

For Examiner's Use

(b) The metals shown below are listed in order of their chemical reactivity.

magnesium (most reactive) zinc iron tin copper

A student carried out an experiment to investigate rusting of iron nails. He joined small pieces of different metals to identical iron nails and placed the nails in open test-tubes which contained a little water. The observations that the student made some days later are shown in Fig. 3.2.

Fig. 3.2

vhat conclusions could the student draw from these observations?
ioi
[2]

www.PapaCambridge.com (a) A bat locates a moth by emitting a pulse of ultrasound as shown in Fig. 4.1. The takes 0.2 seconds to reach the moth and return to the bat after reflection. The speultrasound waves in air is 330 m/s.

Fig. 4.1

(1)	State the formula that you use and show your working.
	formula
	working
	m [3]

(ii) Ultrasound waves travel through the air like sound waves. Explain how these waves travel.

[2]

www.PapaCambridge.com (iii) Ultrasound waves from a bat have the same amplitude as the sound wave on the oscilloscope trace in Fig. 4.2, but a higher frequency.

Fig. 4.2

On Fig. 4.3, sketch the trace that would be produced by the ultrasound waves from a bat.

Fig. 4.3

(b) A locust of mass 2.5 g jumps at a speed of 3 m/s. Calculate the kinetic energy of the locust at this moment. State the formula that you use and show your working.

formula

working

- 5 Whenever a person eats food, small amounts of the food are left on and between the Bacteria in the mouth feed on this, producing acids.
 - (a) Fig. 5.1 shows the pH in a boy's mouth from the time that he got up to when he went to bed.

Fig. 5.1

(i)	What is the normal pH in the boy's mouth?	
		[1]
(ii)	Explain why the pH dropped just after midday.	
		.[2]
		-[-1

9 Toothpastes contain a weak alkali. On Fig. 5.1, draw a line to show what the the mouth might be between 08:00 and 12:00 if the boy had cleaned his immediately after breakfast. (iv) With reference to Fig. 5.1 and your own knowledge, explain how cleaning your teeth can prevent tooth decay.[3] **(b)** Fig. 5.2 shows the teeth on one side of a person's lower jaw. Fig. 5.2 (i) On Fig. 5.2, label an incisor tooth. [1] Describe the function of the teeth labelled X. (ii)

(iii) Describe the function of the teeth labelled X.

[2]

(iii) Tooth decay is more common in the teeth labelled X than in other teeth. Suggest why this is so.

[2]

	For
E	kaminer's
	11

		10	For Examiner's Use as silicon. [1]
	s an important element used to make s obtained from silicon dioxide, SiO ₂ ,	microchips for electronic devices. found in the Earth's crust.	Val Calmb
i) (i)	Name a non-metallic element in the	e same period of the Periodic Table	as silicon.
(ii)	Name a metallic element in the san		
(iii)	State the number of electrons in the Explain how you obtained your answ		[1]
•	ss is made by melting a mixture of sil o mixtures, A and B , used to make gla		[2]
	mixture A	mixture B	
	silicon dioxide	silicon dioxide	
	calcium oxide	calcium oxide	
	sodium oxide	iron oxide	
(i)	Suggest and explain a visible differe made from these mixtures.	nce in the appearance of the two typ	pes of glass
			[2]
(ii)	Underline two phrases in the follow glass.	ving list that correctly describe the	
	·-	ving list that correctly describe the	

(c) The raw materials used to make glass have to be extracted from the Earth. countries much waste glass is re-cycled.

Fig. 6.1 shows some information about the energy needed to produce one kilogram new glass.

Fig. 6.1

Suggest two advantages of re-cycling waste glass.

1		
<i>L</i>	 	

www.PapaCambridge.com (a) Fig. 7.1 shows what happens to rays of white light that are shone at two objects 7

Fig. 7.1

Suggest what objects **A** and **B** might be. Explain your answers.

A	
	••
В	
[4	H

(b) Fig. 7.2 shows a ray of light entering an optical fibre.

Complete the diagram in Fig. 7.2 to show what happens to the ray.

Fig. 7.2

[3]

8	To t	he p	eople of ancient Greece the word <i>element</i> m	eant earth, air, fire or water.	Examiner's Use
	(a)	(i)	Which of the ancient Greek "elements" wou	ld be described today as	Maria
			a compound,		36.CO
			a gaseous mixture, .		133
			evidence of a chemical reaction? .	[3	
		(ii)	Use an example of your choice to explain t used in modern Chemistry.	ne meaning of the term <i>element</i> as it is	;
			example		
			meaning		
				[2]	I
			be broken into anything smaller. 8.1 shows a diagram of an atom as it is und	erstood today.	
		(i)	Name the particles present in part A .		
				[2]]
		(ii)	Name the particle represented by the symb	ol X	
				[1]	1
		(iii)	Describe briefly what happens when the a ion.	tom shown in Fig. 8.1 changes into ar	1

۵	(a)	Complete	the word	Aduation	for	nhotoes	ınthasis
9	(a)	Complete	tile word	equation	101	priotosy	/1111116515

	The state of the s	
	14 A.	1
Con	plete the word equation for photosynthesis.	Can
	$+ \hspace{1cm} \rightarrow \hspace{1cm} + \hspace{1cm}$	
Des		[2]
Som		
calle	d sucrose. The sucrose is transported around the plant.	J
(i)		.[1]
(ii)		.[']
	Suggest and explain one reason why flowers need sugar.	
(i)		
	could contribute to global warming.	
		.[3]
(ii)	Describe one other way in which deforestation can endanger living organisms.	
	Desc Som calle (i)	Complete the word equation for photosynthesis. arbon

15 BLANK PAGE

Turn over for Question 10

www.PapaCambridge.com

10 A skier is pulled up a mountain slope by a cable as shown in Fig. 10.1.

Fig. 10.1

- (a) The skier weighs 650 N. She travels 100 m along the slope and rises a vertical height of 50 m.
 - (i) Calculate the work done in lifting the skier to the top of the slope. You should ignore work done against friction. State the formula that you use and show your working.

formula

working

(ii)

J	[3]
What form of energy did the skier gain by travelling to the top of the slope?	

www.PapaCambridge.com (b) Skiers use a stick in each hand to help control their motion. The sticks work be they only go a few centimetres into the snow.

Fig. 10.2 shows a skier using ski sticks.

Fig. 10.2

Explain, using the terms pressure, force and area,

	(i)	why the ski stick has a pointed end,	
			.[2]
	(ii)	why the stick has a disc a few centimetres above the pointed end.	
			[2]
(c)	Why	y does the skier keep the lower surface of her skis smooth and well polished?	
			[1]

	18	For
		xaminer's
	nestone is a rock containing calcium carbonate. Limestone may suffer both physical weathering.	Use
(a)	Describe one process that causes the physical weathering of limestone.	00
(a)	Describe one process that causes the physical weathering of inflestone.	80
		.c
		V/B
	[2]	1

(b) Rainwater reacts with limestone to form a solution of calcium hydrogencarbonate. This causes the water to become hard.

State two disadvantages of hard water.

1	 	

2

- (ii) State **one** method of softening hard water containing calcium hydrogencarbonate.[1]
- (c) Fig. 11.1 shows a simplified diagram of a lime kiln which is used to convert calcium carbonate into calcium oxide.

Fig. 11.1

$$CaCO_3 \rightarrow CaO + CO_2$$

	Why was		
	19	For Examiner's	
	The balanced equation for the reaction in the lime kiln is	Use	
	$CaCO_3 \rightarrow CaO + CO_2$	Tig.	
(i)	The balanced equation for the reaction in the lime kiln is ${\rm CaCO}_3 \ \to \ {\rm CaO} \ + \ {\rm CO}_2$ Name the type of chemical reaction that produces calcium oxide in the lime kiln.	Se. COM	١
	[1]		
(ii)	Describe briefly how dilute hydrochloric acid could be used to show that a rock contains a carbonate.	1	
	[2]		

	Elements
DATA SHEET	The Periodic Table of the

								Gre	Group									
_	=											≡	2	>	5		0	ı
							1 X Hydrogen										4 He Helium	
7 Lithium 23	9 Beryllium 4											11 Boron 5	12 Carbon 6	14 Nitrogen 7	16 Oxygen 8	19 Fluorine 9 35.5	20 Neon 10 40	
Sodium	Mg Magnesium 12											Aluminium	Silicon	Phosphorus	Sulphur 16	Ct Chlorine	Argon 18	
® ¥	^д О	Sc 45	84 ⊨	5 >	ن و	Mn	26 Te	္မ ၀	69 Z	Çu Cu	es Zn	6 a	д е	75 As	Se 3	® &	84 7	
otassium	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36	2
85	88	68	91	66	96		101	103	106	108	112	115	119	122	128	127	131	20
Rb	S trontium	>	Zironiim	g	Molyhdapum	Tc	Bu	R H	P d	Ag	Cd	In	Su	Sb	J	—	Xe	
	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	-
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209	C	•	ſ	
Caesium	Barium 56	La Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	He Rhenium 75	Osmium 76	Irdium 77	Platinum 78	Au Gold 79	Hg Mercury 80	I (Thallium 81	Lead	Bismuth 83	Polonium 84	At Astatine 85	Radon 86	
	226	227																٦
Francium	Rad ium	Actinium Actinium +																
			7	7	-				C	1	2	0		1	0	1	ŀ	
3-71 La 0-103 /	3-71 Lanthanoid series 0-103 Actinoid series	id series series		740 Ce Cerium	Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	152 Eu Europium 63	Gd Gadolinium 64	159 Torbium 65	Dy Dysprosium 66	165 Ho Holmium 67	16/ Er Erbium 68	Tm Thulium 69	Yb Ytterbium 70	Lu Lutetium 71	
		a = relative atomic mass	nic mass	232	1	238		1		(i		ı	ı				W
<u> </u>	× = ×	X = atomic symbolb = proton (atomic) number	ıbol nic) number	Thorium	Pa Protactinium 91	U Uranium 92	Neptunium	Pu Plutonium 94	Am Americium 95	Curium 96	Berkelium 97	Californium	ES Einsteinium 99	Fm Fermium 100	Mendelevium 101	Nobelium 102	Lawr 102	Pa
				The	The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).	one mole	of any ga	Is is 24 dr	n³ at roon	n tempera	ature and	pressure	(r.t.p.).			a Cambridge Com	acanhb.	

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).